Topology may be interpreted as the study of verifiability, where opens correspond to semi-decidable properties. In this paper we make a distinction between verifiable properties themselves and processes which carry out the verification procedure. The former are simply opens, while we call the latter machines. Given a frame presentation $\mathcal{O} X = \langle G \mid R\rangle$ we construct a space of machines $\Sigma^{\Sigma^G}$ whose points are given by formal combinations of basic machines corresponding to generators in $G$. This comes equipped with an `evaluation' map making it a weak exponential for $\Sigma^X$. When it exists, the true exponential $\Sigma^X$ occurs as a retract of machine space. We argue this helps explain why some spaces are exponentiable and others not. We then use machine space to study compactness by giving a purely topological version of Escard\'o's algorithm for universal quantification over compact spaces in finite time. Finally, we relate our study of machine space to domain theory and domain embeddings.
翻译:地形学可以被解释为“ 可核查” 研究, 它的开口与半分数属性相对应。 在本文中, 我们区分了可核查的属性本身和进行核查程序的过程。 前者只是打开, 而我们称之为后一种机器。 在框架演示中, $\ mathcal{O} X =\ langle G\ mid Rrangle$ 我们建造了一个机器空间 $\ sigma\\\ sigma\ g_G}$, 其点由与发电机相对应的基本机器以$G$的形式组合给出。 该文件配有“ 评估” 地图, 使它成为$\ Sigma_X$的弱指数。 当它存在时, 真正的指数 $\ Sigma_X$ 发生于机器空间的缩放。 我们提出这个论点可以解释为什么有些空间是可膨胀的, 而另一些空间则不是。 然后我们用机器空间来研究紧凑性,, 我们用一个纯粹的顶尖学版 Escard\'o 算法来在有限的时间里进行普遍量化。 最后, 我们把机器空间的研究与域理论和域内嵌连接。