Feedforward neural networks offer a promising approach for solving differential equations. However, the reliability and accuracy of the approximation still represent delicate issues that are not fully resolved in the current literature. Computational approaches are in general highly dependent on a variety of computational parameters as well as on the choice of optimisation methods, a point that has to be seen together with the structure of the cost function. The intention of this paper is to make a step towards resolving these open issues. To this end we study here the solution of a simple but fundamental stiff ordinary differential equation modelling a damped system. We consider two computational approaches for solving differential equations by neural forms. These are the classic but still actual method of trial solutions defining the cost function, and a recent direct construction of the cost function related to the trial solution method. Let us note that the settings we study can easily be applied more generally, including solution of partial differential equations. By a very detailed computational study we show that it is possible to identify preferable choices to be made for parameters and methods. We also illuminate some interesting effects that are observable in the neural network simulations. Overall we extend the current literature in the field by showing what can be done in order to obtain reliable and accurate results by the neural network approach. By doing this we illustrate the importance of a careful choice of the computational setup.


翻译:然而,近似的可靠性和准确性仍代表着目前文献中尚未完全解决的微妙问题。 计算方法一般高度取决于各种计算参数以及优化方法的选择,这一点必须与成本功能的结构一起看待。 本文的意图是为解决这些未决问题迈出一步。 我们在此研究如何解决简单而基本的硬性普通差异方程式模拟系统。 我们考虑两种计算方法,用神经形式解决差异方程式。 这些是典型的但实际的试验方法,界定成本功能,以及最近直接构建与试验解决方案方法相关的成本函数。 让我们注意,我们研究的环境可以更容易地被广泛应用,包括部分差异方程式的解决方案。 通过一项非常详细的计算研究,我们证明有可能找到为参数和方法作出更可取的选择。 我们还展示了在神经网络模拟中观察到的一些有趣的效果。 总体而言,我们扩展了当前测试方法的当前文献的重要性,通过实地的精确度来显示我们所作的精确的计算结果。

0
下载
关闭预览

相关内容

前馈神经网络(Feedforward Neural Network)是设计的第一种也是最简单的人工神经网络。在此网络中,信息仅在一个方向上移动,即从输入节点向前经过隐藏节点(如果有)并到达输出节点。 网络中没有周期或循环。
专知会员服务
77+阅读 · 2021年3月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员