The UNESCO World Heritage List (WHL) includes the exceptionally valuable cultural and natural heritage to be preserved for mankind. Evaluating and justifying the Outstanding Universal Value (OUV) is essential for each site inscribed in the WHL, and yet a complex task, even for experts, since the selection criteria of OUV are not mutually exclusive. Furthermore, manual annotation of heritage values and attributes from multi-source textual data, which is currently dominant in heritage studies, is knowledge-demanding and time-consuming, impeding systematic analysis of such authoritative documents in terms of their implications on heritage management. This study applies state-of-the-art NLP models to build a classifier on a new dataset containing Statements of OUV, seeking an explainable and scalable automation tool to facilitate the nomination, evaluation, research, and monitoring processes of World Heritage sites. Label smoothing is innovatively adapted to improve the model performance by adding prior inter-class relationship knowledge to generate soft labels. The study shows that the best models fine-tuned from BERT and ULMFiT can reach 94.3% top-3 accuracy. A human study with expert evaluation on the model prediction shows that the models are sufficiently generalizable. The study is promising to be further developed and applied in heritage research and practice.
翻译:教科文组织的世界遗产清单(WHL)包括了人类需要保存的极其宝贵的文化和自然遗产。评价和证明杰出的普遍价值(OUV)对于WHL中的每一地点都至关重要,但即使是专家也是一项复杂的任务,因为OUV的选择标准并不相互排斥。此外,从目前遗产研究中占主导地位的多来源文本数据对遗产价值和属性进行人工说明,这是需要知识和耗费时间的,妨碍了从对遗产管理的影响角度对此类权威性文件进行系统分析。本研究采用最先进的NLP模型,在含有OUV声明的新数据集上建立一个分类器,寻求一个可解释和可扩展的自动化工具,以便利世界遗产地点的提名、评价、研究和监测进程。Label的平滑动是创新的,目的是通过增加先前的阶级间关系知识来产生软标签来改进模型的性能。该研究表明,从BERT和ULMFT中微调出的最佳模型可以达到94.3%的最高至3精确度。一项人类研究是经过充分发展的专家研究,在模型中进行成功的进一步评估,在模型中进行了成功的研究。