Humans are universal decision makers: we reason causally to understand the world; we act competitively to gain advantage in commerce, games, and war; and we are able to learn to make better decisions through trial and error. In this paper, we propose Universal Decision Model (UDM), a mathematical formalism based on category theory. Decision objects in a UDM correspond to instances of decision tasks, ranging from causal models and dynamical systems such as Markov decision processes and predictive state representations, to network multiplayer games and Witsenhausen's intrinsic models, which generalizes all these previous formalisms. A UDM is a category of objects, which include decision objects, observation objects, and solution objects. Bisimulation morphisms map between decision objects that capture structure-preserving abstractions. We formulate universal properties of UDMs, including information integration, decision solvability, and hierarchical abstraction. We describe universal functorial representations of UDMs, and propose an algorithm for computing the minimal object in a UDM using algebraic topology. We sketch out an application of UDMs to causal inference in network economics, using a complex multiplayer producer-consumer two-sided marketplace.


翻译:人类是普遍性的决策者:我们根据因果关系来理解世界;我们通过竞争来获取商业、游戏和战争的优势;我们通过试验和错误来学习更好的决策;我们在本文件中提出了基于分类理论的数学形式主义通用决定模型(UDM)。UDM中的决定对象与决定任务的例子相对应,从因果模型和动态系统,如Markov决策程序和预测状态演示,到网络多玩家游戏和Witsenhausen的内在模型,这些模型概括了所有这些以往的正规主义。UDM是一个对象的类别,其中包括决定对象、观察对象和解决方案对象。在决定对象之间绘制模拟形态图,以捕捉到结构-保留抽象要素。我们绘制UDMs的普遍性特性,包括信息整合、决定可溶性和等级抽象。我们描述UDMs的普遍真菌代表性,并提议一种算法,用等数位表在UDMDM中计算最起码的物体。我们绘制了UDMS两种应用到网络中复杂的多面市场的因果关系。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
52+阅读 · 2021年6月30日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关资讯
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
Top
微信扫码咨询专知VIP会员