Supersaturated designs, in which the number of factors exceeds the number of runs, are often constructed under a heuristic criterion that measures a design's proximity to an unattainable orthogonal design. Such a criterion does not directly measure a design's quality in terms of screening. To address this disconnect, we develop optimality criteria to maximize the lasso's sign recovery probability. The criteria have varying amounts of prior knowledge about the model's parameters. We show that an orthogonal design is an ideal structure when the signs of the active factors are unknown. When the signs are assumed known, we show that a design whose columns exhibit small, positive correlations are ideal. Such designs are sought after by the Var(s+)-criterion. These conclusions are based on a continuous optimization framework, which rigorously justifies the use of established heuristic criteria. From this justification, we propose a computationally-efficient design search algorithm that filters through optimal designs under different heuristic criteria to select the one that maximizes the sign recovery probability under the lasso.


翻译:翻译后的摘要: 超饱和设计中,因子数量超过运行次数,常常被构建为一个启发式标准下的近似无法达成的正交设计。这样的标准并没有直接衡量一个设计在筛选方面的质量。为了解决这种脱节,我们开发了优化标准,最大化 Lasso 的符号恢复概率。这些标准对模型参数有不同程度的先验知识。我们表明,当活动因子的符号未知时,正交设计是理想的结构。当符号已知时,我们表明,具有小的正相关性的列的设计是理想的。这样的设计是 Var(s+)-criterion 寻求的。这些结论基于连续优化框架,严格证明了使用已建立的启发式标准的理由。基于这个证明,我们提出了一个计算高效的设计搜索算法,该算法通过不同的启发式标准过滤出最佳的设计,以最大化 Lasso 中的符号恢复概率。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | TuckER:基于张量分解的知识图谱补全
开放知识图谱
34+阅读 · 2019年3月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员