We study a common delivery problem encountered in nowadays online food-ordering platforms: Customers order dishes online, and the restaurant delivers the food after receiving the order. Specifically, we study a problem where $k$ vehicles of capacity $c$ are serving a set of requests ordering food from one restaurant. After a request arrives, it can be served by a vehicle moving from the restaurant to its delivery location. We are interested in serving all requests while minimizing the maximum flow-time, i.e., the maximum time length a customer waits to receive his/her food after submitting the order. We show that the problem is hard in both offline and online settings: There is a hardness of approximation of $\Omega(n)$ for the offline problem, and a lower bound of $\Omega(n)$ on the competitive ratio of any online algorithm, where $n$ is number of points in the metric. Our main result is an $O(1)$-competitive online algorithm for the uncapaciated (i.e, $c = \infty$) food delivery problem on tree metrics. Then we consider the speed-augmentation model. We develop an exponential time $(1+\epsilon)$-speeding $O(1/\epsilon)$-competitive algorithm for any $\epsilon > 0$. A polynomial time algorithm can be obtained with a speeding factor of $\alpha_{TSP}+ \epsilon$ or $\alpha_{CVRP}+ \epsilon$, depending on whether the problem is uncapacitated. Here $\alpha_{TSP}$ and $\alpha_{CVRP}$ are the best approximation factors for the traveling salesman (TSP) and capacitated vehicle routing (CVRP) problems respectively. We complement the results with some negative ones.


翻译:我们研究的是当今在线食品订购平台遇到的共同交付问题:客户在网上订购盘子,餐厅在收到订单后提供食品。 具体地说, 我们研究的是, 一个问题, 容量为一餐点订购食品的一连串要求, 需求到来后, 可以用从餐厅到交货地点的一辆车来满足。 我们感兴趣的是满足所有请求, 同时尽量减少最大流量时间, 即客户在提交订单后等待接收他/ 她食物的最大时间长度。 我们显示, 问题在离线和在线设置中都很困难: 离线问题需要美元/ Omega (n) 的近似值为美元/ Omega (n), 任何在线算法的竞争性比率为$/ Omega ($) 。 我们的主要结果是, 以美元/美元/ p- preal commanual 时间( =_r_ral_ral_ral_ral_ ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ exal__ral_ral__ral_ral_ral__ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral____ral_ral_ral_____ral_ral_ral___ral_ral___ral_ral_ral_ral_ral_ral_ral____ral_ral______________ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_r_ral__ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral_ral__

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2019年6月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
4+阅读 · 2021年7月1日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年6月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
相关论文
Arxiv
4+阅读 · 2021年7月1日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员