The Lindeberg-Feller and Lyapunov Central Limit Theorems are generalized to Hilbert Spaces. They are also shown to force random variables into a bounded and compact topology, confining their shapes and sizes to some finite space useful for non-parametric inference.
翻译:Lindeberg-Feller 和 Lyapunov 中央限制理论在Hilbert Spaces 中是通用的,它们还被显示将随机变数强迫成一连串紧凑的表层,将其形状和大小限制在一些可用于非参数推论的有限空间。