项目名称: 光子角动量解耦脉冲的物理实现研究

项目编号: No.61307062

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 苏志锟

作者单位: 佛山科学技术学院

项目金额: 24万元

中文摘要: 光子(自旋及轨道)角动量在量子通信中具有广泛的应用前景,但光子在传输过程中,与外界环境总存在耦合,导致光子发生退相干,成为光量子通信的重要障碍。动态解耦技术在固态量子系统中成功地抑制了系统退相干,它的基本"部件"是解耦脉冲。本项目计划用玻片、柱面透镜等光学元件构造出适用于光子角动量的解耦脉冲,从而达到在光子系统中运用动态解耦抑制退相干的目的。分别在光子轨道和自旋两个自由度中,研究解耦脉冲的物理实现,并针对实验误差进行优化。在光子轨道角动量自由度中,利用模式转换器等元件实现对1阶拉盖尔-高斯模Poincare球的任意么正变换。在此基础上,根据光学设计原理设计出适用于抑制光子轨道角动量退相干的模式转换器。在光子自旋角动量自由度中,分析由玻片组成的解耦脉冲由于实验误差而引入的影响,并设计减少影响的方案。本项目为拓展光子角动量在未来量子通信等领域中的潜在应用提供理论和技术支持。

中文关键词: 动态解耦;轨道角动量;自旋角动量;退相干;几何相位

英文摘要: Photon angular momentums, including spin angular momentum (SAM) and orbital angular momentum (OAM), have many promising applications in quantum communication. However, since photons always couple with the external environment in propagation, the coherence of the photons will be degraded during this process. Therefore, photon decoherence has been a major obstacle for quantum communication. For the solid-state quantum systems, researchers have achieved great success in developing dynamical decoupling techniques to suppress decoherence. The basic "component" of the dynamical decoupling is decoupling pulse. Our project will apply the idea of dynamical decoupling to suppress photonic decoherence. To achieve dynamical decoupling for the photons, we need to physically construct decoupling pulses which is suitable for photons. We plan to investigate the physical realization of decoupling pulses for both SAM and OAM, and optimize the experimental error. For OAM, we first achieve any unitary operator on 1-order Laguerre-Gaussian mode poincare, then we design a mode converter, according to optic principle of cylinder lens, to realize the decoupling pulse. For SAM, the impact due to the error of system is analysed and a scheme will be designed to reduce the impact. Our project will deepen the understanding of photon orbital

英文关键词: dynamical decoupling;orbital angular momentum;spin angular momentum;decoherence;geometric phase

成为VIP会员查看完整内容
0

相关内容

类脑超大规模深度神经网络系统
专知会员服务
54+阅读 · 2022年1月21日
【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
81+阅读 · 2022年1月7日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
42+阅读 · 2021年2月8日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2018年3月28日
小贴士
相关VIP内容
类脑超大规模深度神经网络系统
专知会员服务
54+阅读 · 2022年1月21日
【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
81+阅读 · 2022年1月7日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
42+阅读 · 2021年2月8日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员