Spectrum scarcity has led to growth in the use of unlicensed spectrum for cellular systems. This motivates intelligent adaptive approaches to spectrum access for both WiFi and 5G that improve upon traditional carrier sensing and listen-before-talk methods. We study decentralized contention-based medium access for base stations (BSs) of a single Radio Access Technology (RAT) operating on unlicensed shared spectrum. We devise a learning-based algorithm for both contention and adaptive modulation that attempts to maximize a network-wide downlink throughput objective. We formulate and develop novel distributed implementations of two deep reinforcement learning approaches - Deep Q Networks and Proximal Policy Optimization - modelled on a two stage Markov decision process. Empirically, we find the (proportional fairness) reward accumulated by the policy gradient approach to be significantly higher than even a genie-aided adaptive energy detection threshold. Our approaches are further validated by improved sum and peak throughput. The scalability of our approach to large networks is demonstrated via an improved cumulative reward earned on both indoor and outdoor layouts with a large number of BSs.


翻译:光谱稀缺导致对蜂窝系统的无许可证频谱的使用增加。这促使对无证光谱的使用采取智能适应性办法,改善传统的载体感测和监听前对话方法。我们研究了以无许可证共享光谱运行的单一无线电存取技术的基础站(BS)基于争议的中位接入。我们为争议和适应性调控设计了一种基于学习的算法,以尽量扩大整个网络的下链路吞吐量目标。我们制定并开发了两种深度强化学习方法----深Q网络和普罗克西米亚政策优化----的新的分散实施方法,这些方法以两个阶段Markov决策程序为模型。我们偶然地发现,政策梯度方法积累的(相称性)奖赏远远高于甚至由基因辅助的适应性能源探测阈值。我们的方法进一步得到改进的总量和峰值的验证。我们对大型网络的做法的可扩展性是通过大量BS的室内和室外布局获得更好的累积奖赏来证明的。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
11+阅读 · 2021年2月17日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员