Living systems process sensory data to facilitate adaptive behaviour. A given sensor can be stimulated as the result of internally driven activity, or by purely external (environmental) sources. It is clear that these inputs are processed differently - have you ever tried tickling yourself? The canonical explanation of this difference is that when the brain sends a signal that would result in motor activity, it uses a copy of that signal to predict the sensory consequences of the resulting motor activity. The predicted sensory input is then subtracted from the actual sensory input, resulting in attenuation of the stimuli. To critically evaluate this idea, and investigate when non-predictive solutions may be viable, we implement a computational model of a simple embodied system with self-caused sensorimotor dynamics, and analyse how controllers successfully accomplish tasks in this model. We find that in these simple systems, solutions that regulate behaviour to control self-caused sensory inputs tend to emerge, rather than solutions which predict and filter out self-caused inputs. In some cases, solutions depend on the presence of these self-caused inputs.
翻译:生活系统感官数据可以促进适应行为。 特定传感器可以因内部驱动的活动或纯粹外部( 环境) 来源而被刺激。 显然, 这些输入的处理方式不同, 您有没有尝试过自己感到痒痒? 这种差异的典型解释是, 当大脑发出一个信号, 从而导致运动活动时, 它使用该信号的复制件来预测由此产生的运动活动的感官后果。 预测的感官输入会从实际感官输入中减去, 从而导致舒缓性输入。 要批判性地评估这个想法, 并在非预知性解决方案可行时进行调查, 我们实施一个简单的内含感官动态系统的计算模型, 分析控制器如何成功完成这个模型中的任务。 我们发现, 在这些简单的系统中, 调节控制自导感应输入的行为的解决方案往往会出现, 而不是预测和过滤自导输入的解决方案。 在某些情况下, 解决方案取决于这些自导输入的存在 。