Link prediction aims to predict links of a network that are not directly visible, with profound applications in biological and social systems. Despite intensive utilization of the topological feature in this task, it is unclear to what extent a particular feature can be leveraged to infer missing links. Here, we show that the maximum capability of a topological feature follows a simple mathematical expression, which is independent of how an index gauges the feature. Hence, a family of indexes associated with one topological feature shares the same performance limit. A feature's capability is lifted in the supervised prediction, which in general gives rise to better results compared with unsupervised prediction. The universality of the pattern uncovered is empirically verified by 550 structurally diverse networks, which can be applied to feature selection and the analysis of network characteristics associated with a topological feature in link prediction.
翻译:链接预测旨在预测一个不直接可见、在生物和社会系统中具有深刻应用的网络的连接。尽管在这项任务中大量利用了一个地形特征,但不清楚可以在多大程度上利用某一特征来推断缺失的环节。这里,我们表明,地形特征的最大能力遵循一个简单的数学表达方式,这一表达方式独立于指数如何测量特征。因此,与一个地形特征相关的一系列指数具有相同的性能限制。在监督的预测中,一个特征的能力被解除,这通常比未经监督的预测产生更好的结果。所发现的特征的普遍性由550个结构多样的网络通过经验验证,这些网络可以用来选择特征和分析与连接的地形特征相关的网络特征。