A mimetic spectral element discretization, utilizing a novel Galerkin projection Hodge star operator, of the macroscopic Maxwell equations in Hamiltonian form is presented. The idea of splitting purely topological and metric dependent quantities is natural in the Hamiltonian modeling framework as the Poisson bracket is metric free with the Hamiltonian containing all metric information. This idea may be incorporated into the mimetic spectral element method by directly discretizing the Poincar\'e duality structure. This "split exterior calculus mimetic spectral element method" yields spatially discretized Maxwell's equations which are Hamiltonian and exactly and strongly conserve Gauss's laws. Moreover, the new discrete Hodge star operator is itself of interest as a partition of the purely topological and metric dependent portions of the Hodge star operator. As a simple test case, the numerical results of applying this method to a one-dimensional version of Maxwell's equations are given.
翻译:在汉密尔顿模型框架中自然提出了将纯表层和公吨依赖量分开的概念,因为Poisson括号与载有所有计量信息的汉密尔顿仪是免费的。这个想法可以通过将Poincar\'e的双重性结构直接分离而纳入电磁光谱元素方法。这种“外缘微积分光元素元件法”产生空间离散的Maxwell方程式,它们是汉密尔顿式的,精确和有力地保护高斯的定律。此外,新的离散霍奇恒星经营者本身作为Hodge恒星经营者纯表层和公吨依赖部分的分割,引起了兴趣。作为一个简单的试验案例,给出了将这一方法应用于马克斯韦方程式的一维版本的数字结果。