Xenophobia is one of the key drivers of marginalisation, discrimination, and conflict, yet many prominent machine learning (ML) fairness frameworks fail to comprehensively measure or mitigate the resulting xenophobic harms. Here we aim to bridge this conceptual gap and help facilitate safe and ethical design of artificial intelligence (AI) solutions. We ground our analysis of the impact of xenophobia by first identifying distinct types of xenophobic harms, and then applying this framework across a number of prominent AI application domains, reviewing the potential interplay between AI and xenophobia on social media and recommendation systems, healthcare, immigration, employment, as well as biases in large pre-trained models. These help inform our recommendations towards an inclusive, xenophilic design of future AI systems.
翻译:仇外心理是边缘化、歧视和冲突的主要驱动因素之一,但许多著名的机器学习(ML)公平框架未能全面衡量或减轻由此产生的仇外伤害。在这里,我们的目标是弥合这一概念上的差距,帮助为人造情报(AI)解决方案的安全和道德设计提供便利。我们对仇外心理影响的分析基础是首先确定不同种类的仇外伤害,然后将这一框架应用于AI的一些突出应用领域,审查大赦国际和仇外心理之间在社会媒体和建议系统、保健、移民、就业以及大型预先培训模式中的偏见方面的潜在相互作用。这有助于指导我们关于未来AI系统包容性的、有色人种的设计的建议。