Traditional machine learning-based steganalysis methods on compressed speech have achieved great success in the field of communication security. However, previous studies lacked mathematical description and modeling of the correlation between codewords, and there is still room for improvement in steganalysis for small-sized and low embedding rates sample. To deal with the challenge, We use Bayesian networks to measure different types of correlations between codewords in linear prediction code and present F3SNet -- a four-step strategy: Embedding, Encoding, Attention and Classification for quantizaition index modulation steganalysis of compressed speech based on Hierarchical Attention Network. Among them, Embedding converts codewords into high-density numerical vectors, Encoding uses the memory characteristics of LSTM to retain more information by distributing it among all its vectors and Attention further determines which vectors have a greater impact on the final classification result. To evaluate the performance of F3SNet, we make comprehensive comparison of F3SNet with existing steganography methods. Experimental results show that F3SNet surpasses the state-of-the-art methods, particularly for small-sized and low embedding rate samples.


翻译:在通信安全领域,基于传统机器的压缩言语传统分析方法取得了巨大成功,然而,以前的研究缺乏数学描述和对编码词之间相互关系的建模,在小尺寸和低嵌入率样本的制导分析方面仍有改进的余地。为了应对这一挑战,我们利用拜叶斯网络测量线性预测代码和F3SNet中代码词与F3SNet -- -- 一种四步战略 -- -- 不同类型的相关性:在高纬度注意网络基础上对定量调控指数进行嵌入、编码、注意和分类分析。其中,嵌入式将编码词转换成高密度数字矢量,编码使用LSTM的记忆特性保存更多的信息,将它传播到所有矢量中,并注意进一步确定哪些矢量对最后分类结果有更大的影响。为了评价F3SNet的性能,我们将F3SNet的调控与现有的导理法方法进行全面比较。实验结果显示,F3SNet的编码转换结果显示F3SNet超过低密度的嵌入率,特别是小比例。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
专知会员服务
44+阅读 · 2020年12月18日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN最新研究进展综述
机器学习研究会
26+阅读 · 2018年1月6日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Compression of Deep Learning Models for Text: A Survey
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN最新研究进展综述
机器学习研究会
26+阅读 · 2018年1月6日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员