There are exactly two non-commutative rings of size $4$, namely, $E = \langle a, b ~\vert ~ 2a = 2b = 0, a^2 = a, b^2 = b, ab= a, ba = b\rangle$ and its opposite ring $F$. These rings are non-unital. A subset $D$ of $E^m$ is defined with the help of simplicial complexes, and utilized to construct linear left-$E$-codes $C^L_D=\{(v\cdot d)_{d\in D} : v\in E^m\}$ and right-$E$-codes $C^R_D=\{(d\cdot v)_{d\in D} : v\in E^m\}$. We study their corresponding binary codes obtained via a Gray map. The weight distributions of all these codes are computed. We achieve a couple of infinite families of optimal codes with respect to the Griesmer bound. Ashikhmin-Barg's condition for minimality of a linear code is satisfied by most of the binary codes we constructed here. All the binary codes in this article are few-weight codes, and self-orthogonal codes under certain mild conditions. This is the first attempt to study the structure of linear codes over non-unital non-commutative rings using simplicial complexes.
翻译:使用单纯复合体构建在非幺环非交换环 $E$ 上的码
翻译后的摘要:
本文研究了一个非幺环非交换环 $E = \langle a, b ~\vert ~2a = 2b = 0, a^2 = a, b^2 = b, ab= a, ba = b \rangle$ 以及它的对合环 $F$。这两个环都是非幺环环。使用单纯复合体构建了环 $E^m$ 中的子集 $D$,并用其构造了线性左 $E$-码 $C^L_D=\{(v\cdot d)_{d\in D} : v\in E^m\}$ 和右 $E$-码 $C^R_D=\{(d\cdot v)_{d\in D} : v\in E^m\}$。本文计算了这些码的二进制码的权重分布。本文还得到了几个满足格里斯默界的优秀码族。本文构建的大多数二进制码满足 Ashikhmin-Barg 条件。所构建的所有二进制码都是少权码,并且在某些条件下是自正交码。这是第一次使用单纯复合体来研究在非幺环非交换环上的线性码结构。