As is well known, the stability of the 3-step backward differentiation formula (BDF3) on variable grids for a parabolic problem is analyzed in [Calvo and Grigorieff, \newblock BIT. \textbf{42} (2002) 689--701] under the condition $r_k:=\tau_k/\tau_{k-1}<1.199$, where $r_k$ is the adjacent time-step ratio. In this work, we establish the spectral norm inequality, which can be used to give a upper bound for the inverse matrix. Then the BDF3 scheme is unconditionally stable under a new condition $r_k\leq 1.405$. Meanwhile, we show that the upper bound of the ratio $r_k$ is less than $\sqrt{3}$ for BDF3 scheme. In addition, based on the idea of [Wang and Ruuth, J. Comput. Math. \textbf{26} (2008) 838--855; Chen, Yu, and Zhang, arXiv:2108.02910], we design a weighted and shifted BDF3 (WSBDF3) scheme for solving the parabolic problem. We prove that the WSBDF3 scheme is unconditionally stable under the condition $r_k\leq 1.771$, which is a significant improvement for the maximum time-step ratio. The error estimates are obtained by the stability inequality. Finally, numerical experiments are given to illustrate the theoretical results.
翻译:众所周知,对于抛物线问题的变差网格上的3步后退差异公式(BDF3)的稳定性在[Calvo和Grigorieff,\newbresh BIT.\ textbf{42}(2002) 689-701](2002年)中分析,条件为$k: ⁇ tau_k/\tau ⁇ k-1 ⁇ 1/1199美元,其中美元是相邻的时步比率。在这项工作中,我们建立了光谱标准不平等(BDF3),可以用来为反向矩阵设定上限。然后,BDF3计划在一个新条件下无条件稳定。同时,我们显示美元比率的上限比值小于$\sqrt{3}。此外,基于[Wang和Ruuth, J.comput. math.\ textbf{26}(2008年) 838-855;Chen、Yu、axxiv:210/lelex3, 在一个新的条件下,我们设计了一个稳定的SFSB 的数值变换了一个稳定的货币方案。