We present a method for extracting information about facial expressions from digital images. The method codes facial expression images using a multi-orientation, multi-resolution set of Gabor filters that are topographically ordered and approximately aligned with the face. A similarity space derived from this code is compared with one derived from semantic ratings of the images by human observers. Interestingly the low-dimensional structure of the image-derived similarity space shares organizational features with the circumplex model of affect, suggesting a bridge between categorical and dimensional representations of facial expression. Our results also indicate that it would be possible to construct a facial expression classifier based on a topographically-linked multi-orientation, multi-resolution Gabor coding of the facial images at the input stage. The significant degree of psychological plausibility exhibited by the proposed code may also be useful in the design of human-computer interfaces.
翻译:我们提出了一个从数字图像中提取面部表达方式信息的方法。 方法代码面部表达方式图像使用多方向、多分辨率的一组加博过滤器,这些过滤器按地形排列,大致与面部相容。 这个代码产生的类似空间与人类观察者对图像的语义评级得出的类似空间进行了比较。 有趣的是,图像生成的相近空间的低维结构将组织特征与左右影响模型共享,暗示面部表达方式的直截面和维面表达方式之间的桥梁。 我们的结果还表明,有可能在输入阶段根据与地形相关的多方向、多分辨率的面部图像编码来构建面部表达式分类器。 拟议的代码所显示的高度的心理直观性在设计人- 计算机界面时也可能有用。