In this work we deal with parametric inverse problems, which consist in recovering a finite number of parameters describing the structure of an unknown object, from indirect measurements. State-of-the-art methods for approximating a regularizing inverse operator by using a dataset of input-output pairs of the forward model rely on deep learning techniques. In these approaches, a neural network is trained to predict the value of the sought parameters directly from the data. In this paper, we show that these methods provide suboptimal results when the topology of the parameter space is strictly coarser than the Euclidean one. To overcome this issue, we propose a two-step strategy for approximating a regularizing inverse operator by means of a neural network, which works under general topological conditions. First, we embed the parameters into a subspace of a low-dimensional Euclidean space; second, we use a neural network to approximate a homeomorphism between the subspace and the image of the parameter space through the forward operator. The parameters are then retrieved by applying the inverse of the embedding to the network predictions. The results are shown for the problem of X-ray imaging of solar flares with data from the Spectrometer/Telescope for Imaging X-rays. In this case, the parameter space is a family of Moebius strips that collapse into a point. Our simulation studies show that the use of a neural network for predicting the parameters directly from the data yields systematic errors due to the non-Euclidean topology of the parameter space. The proposed strategy overcomes the topological issues and furnishes stable and accurate reconstructions.


翻译:在这项工作中,我们处理反向问题,包括从间接测量中恢复数量有限的参数,描述一个未知物体的结构,这些参数来自间接测量。使用前方模型输入输出对对对的数据集,以深层学习技术为依托。在这些方法中,神经网络经过培训,直接从数据中预测所寻求参数的价值。在本文件中,当参数空间的表层误差比Eucliidean 一级严格粗糙时,这些方法提供了亚优的结果。为了克服这一问题,我们直接提出一个双步战略,通过在一般地形条件下运行的神经网络,使一个对准反向操作者。首先,我们将这些参数嵌入一个低度 Eucliidean空间空间的子空间空间;第二,我们使用一个神经网络来估计子空间的底部误差,然后通过前方操作者来测量参数,然后用Xmellimeal的内径的内径直线图进行反向反向反向反向反向反向反向反向反向反向反向反向反向反向运行运行一个反向运行运行的运行运行运行运行的运行。在Smexprealbreal-rial-realal resuideal resuideodeal resuideanideandeal madeal resmadandandan, maidean madan madan madan madan ma ma ma ma ma ma ma ma ma ma ma ma ma ma ma ma ma maildal the the the the the the the the the the the the the the the the mail mail malogyal dal malogyal ress ressal ressal ressal dal dal dal dal dal dal dal ressal ressal ressal ressal ressal ressal ress ress ress ress ress ress ress res res mas ress ress ress the the the the the the the the the the the the the the the the sal ress ress ress res

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
48+阅读 · 2022年2月19日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
专知会员服务
61+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年5月25日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员