In this paper, we develop a numerical scheme to handle interfaces across computational domains in multi-block schemes for the approximation of systems of conservation laws. We are interested in transmitting shock discontinuities without lowering the overall precision of the method. We want to accomplish this without using information from interior points of adjacent grids, that is, sharing only information from boundary points of those grids. To achieve this, we choose to work with the second-order Kurganov-Tadmor (KT) method at interior points, relaxing it to first order at interfaces. This allows us to keep second-order overall accuracy (in the relevant norm) and at the same time preserve the TVD property of the original scheme. After developing the method we performed several standard one and two-dimensional tests. Among them, we used the one-dimensional advection and Burgers equations to verify the second-order convergence of the method. We also tested the two-dimensional Euler equations with an implosion and a Gresho vortex\cite{liska2003}. In particular, in the two-dimensional implosion test we can see that regardless of the orientation of shocks with respect to the interface, they travel across them without appreciable deformation both in amplitude and front direction.
翻译:本文中, 我们开发了一个数字方案, 用于处理多块系统中跨计算域的界面, 以近似保护法体系。 我们有意在不降低方法总体精确度的情况下传输休克不连续功能。 我们想要做到这一点, 不使用相邻网格内部点的信息, 即只分享这些网格边界点的信息。 为了实现这一点, 我们选择在内部点使用Kurganov- Tadmor (KT) 二级 Kurganov- Tadmor (KT) 方法, 并在界面中将其放松到第一顺序 。 这使得我们能够保持二阶总体准确性( 在相关规范中), 同时保存原方案TVD 的属性 。 在开发了我们进行了数个标准一和二维测试的方法之后, 我们不使用单维对流和布尔格方程式等方程式来验证方法的第二阶次趋同 。 我们还在内部点测试了二维 Euler 方程式, 并测试了该方程式在界面上的第一顺序 {liska2003} 。 特别是, 在二维的断面的内置测试中, 我们可以看到它们与前方位的反方向, 。