Recent literature has advocated the use of randomized methods for accelerating the solution of various matrix problems arising throughout data science and computational science. One popular strategy for leveraging randomization is to use it as a way to reduce problem size. However, methods based on this strategy lack sufficient accuracy for some applications. Randomized preconditioning is another approach for leveraging randomization, which provides higher accuracy. The main challenge in using randomized preconditioning is the need for an underlying iterative method, thus randomized preconditioning so far have been applied almost exclusively to solving regression problems and linear systems. In this article, we show how to expand the application of randomized preconditioning to another important set of problems prevalent across data science: optimization problems with (generalized) orthogonality constraints. We demonstrate our approach, which is based on the framework of Riemannian optimization and Riemannian preconditioning, on the problem of computing the dominant canonical correlations and on the Fisher linear discriminant analysis problem. For both problems, we evaluate the effect of preconditioning on the computational costs and asymptotic convergence, and demonstrate empirically the utility of our approach.
翻译:最近的文献主张采用随机化方法加速解决数据科学和计算科学过程中出现的各种矩阵问题。利用随机化的流行战略之一是将随机化作为减少问题规模的一种方法。但是,基于这一战略的方法对某些应用缺乏足够的准确性。随机化的先决条件是利用随机化的另一种方法,它提供了更高的准确性。使用随机化的先决条件的主要挑战是需要一种潜在的迭代方法,因此迄今为止随机化的先决条件几乎完全用于解决回归问题和线性系统。在本篇文章中,我们展示了如何将随机化的先决条件的应用扩大到整个数据科学中普遍存在的另一组重要问题:优化(一般化)或孔性限制的问题。我们展示了我们的方法,它基于里曼式优化和里曼性先决条件的框架、计算主要罐体相关性的问题和渔业线性分裂性分析问题。关于这两个问题,我们评估了对计算成本的前提条件和微调趋同的效果,并用经验展示了我们方法的实用性。