We consider the problem of efficiently solving large-scale linear least squares problems that have one or more linear constraints that must be satisfied exactly. Whilst some classical approaches are theoretically well founded, they can face difficulties when the matrix of constraints contains dense rows or if an algorithmic transformation used in the solution process results in a modified problem that is much denser than the original one. To address this, we propose modifications and new ideas, with an emphasis on requiring the constraints are satisfied with a small residual. We examine combining the null-space method with our recently developed algorithm for computing a null space basis matrix for a ``wide'' matrix. We further show that a direct elimination approach enhanced by careful pivoting can be effective in transforming the problem to an unconstrained sparse-dense least squares problem that can be solved with existing direct or iterative methods. We also present a number of solution variants that employ an augmented system formulation, which can be attractive when solving a sequence of related problems. Numerical experiments using problems coming from practical applications are used throughout to demonstrate the effectiveness of the different approaches.
翻译:我们考虑了有效解决大规模线性最小方的问题,这些问题有一个或几个必须完全满足的线性限制。虽然一些典型的方法在理论上是有充分依据的,但是当制约矩阵包含密集的行数,或者当解决方案过程中使用的算法转换导致一个比最初的更稠密的问题时,它们可能面临困难。为了解决这个问题,我们提出修改和新想法,强调要求限制与一个小的剩余部分相适应。我们研究将空空空间方法与我们最近开发的计算“全局”矩阵空空基矩阵的算法相结合。我们进一步表明,通过谨慎的搭配而加强的直接消除方法能够有效地将问题转化为一个不那么紧张的稀薄的最小方格问题,而这一问题可以通过现有的直接或迭接方法加以解决。我们还提出了一些采用强化系统配置的替代方法,在解决一系列相关问题时具有吸引力。利用实际应用产生的问题进行量化实验,以证明不同方法的有效性。