We consider the problem of efficiently solving large-scale linear least squares problems that have one or more linear constraints that must be satisfied exactly. Whilst some classical approaches are theoretically well founded, they can face difficulties when the matrix of constraints contains dense rows or if an algorithmic transformation used in the solution process results in a modified problem that is much denser than the original one. To address this, we propose modifications and new ideas, with an emphasis on requiring the constraints are satisfied with a small residual. We examine combining the null-space method with our recently developed algorithm for computing a null space basis matrix for a ``wide'' matrix. We further show that a direct elimination approach enhanced by careful pivoting can be effective in transforming the problem to an unconstrained sparse-dense least squares problem that can be solved with existing direct or iterative methods. We also present a number of solution variants that employ an augmented system formulation, which can be attractive when solving a sequence of related problems. Numerical experiments using problems coming from practical applications are used throughout to demonstrate the effectiveness of the different approaches.


翻译:我们考虑了有效解决大规模线性最小方的问题,这些问题有一个或几个必须完全满足的线性限制。虽然一些典型的方法在理论上是有充分依据的,但是当制约矩阵包含密集的行数,或者当解决方案过程中使用的算法转换导致一个比最初的更稠密的问题时,它们可能面临困难。为了解决这个问题,我们提出修改和新想法,强调要求限制与一个小的剩余部分相适应。我们研究将空空空间方法与我们最近开发的计算“全局”矩阵空空基矩阵的算法相结合。我们进一步表明,通过谨慎的搭配而加强的直接消除方法能够有效地将问题转化为一个不那么紧张的稀薄的最小方格问题,而这一问题可以通过现有的直接或迭接方法加以解决。我们还提出了一些采用强化系统配置的替代方法,在解决一系列相关问题时具有吸引力。利用实际应用产生的问题进行量化实验,以证明不同方法的有效性。

0
下载
关闭预览

相关内容

【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
76+阅读 · 2021年1月29日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
76+阅读 · 2021年1月29日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员