We present a novel autoregression network to generate virtual agents that convey various emotions through their walking styles or gaits. Given the 3D pose sequences of a gait, our network extracts pertinent movement features and affective features from the gait. We use these features to synthesize subsequent gaits such that the virtual agents can express and transition between emotions represented as combinations of happy, sad, angry, and neutral. We incorporate multiple regularizations in the training of our network to simultaneously enforce plausible movements and noticeable emotions on the virtual agents. We also integrate our approach with an AR environment using a Microsoft HoloLens and can generate emotive gaits at interactive rates to increase the social presence. We evaluate how human observers perceive both the naturalness and the emotions from the generated gaits of the virtual agents in a web-based study. Our results indicate around 89% of the users found the naturalness of the gaits satisfactory on a five-point Likert scale, and the emotions they perceived from the virtual agents are statistically similar to the intended emotions of the virtual agents. We also use our network to augment existing gait datasets with emotive gaits and will release this augmented dataset for future research in emotion prediction and emotive gait synthesis. Our project website is available at https://gamma.umd.edu/gen_emotive_gaits/.
翻译:我们展示了一个新颖的自动递增网络,以产生通过行走方式或动作传递各种情感的虚拟代理器。鉴于3D构成动作序列,我们的网络从动作中提取了相关的运动特征和感官特征。我们利用这些特征来合成随后的片段,以便虚拟代理器能够表达和在作为快乐、悲伤、愤怒和中立组合的情感之间过渡;我们把多重规范化纳入我们的网络培训中,以同时执行虚拟代理器的貌似运动和明显情感。我们还利用微软 HoloLens将我们的方法与AR环境结合起来,并能够以互动速度生成情绪性听觉来增加社会存在。我们在网上研究中评估人类观察者如何看待虚拟代理器生成的片段的自然性和情绪。我们的结果显示,大约89%的用户发现,在5点微粒规模上,它们从虚拟代理器中感受到的情绪在统计上与虚拟代理器的预期情感相似。我们还利用我们的网络,用情绪来增加现有的视频数据设置,用情绪性视频视频看,增加社会存在。我们将在将来的ememia_ememimal网站上发布这一数据预测。