Context information in search sessions has proven to be useful for capturing user search intent. Existing studies explored user behavior sequences in sessions in different ways to enhance query suggestion or document ranking. However, a user behavior sequence has often been viewed as a definite and exact signal reflecting a user's behavior. In reality, it is highly variable: user's queries for the same intent can vary, and different documents can be clicked. To learn a more robust representation of the user behavior sequence, we propose a method based on contrastive learning, which takes into account the possible variations in user's behavior sequences. Specifically, we propose three data augmentation strategies to generate similar variants of user behavior sequences and contrast them with other sequences. In so doing, the model is forced to be more robust regarding the possible variations. The optimized sequence representation is incorporated into document ranking. Experiments on two real query log datasets show that our proposed model outperforms the state-of-the-art methods significantly, which demonstrates the effectiveness of our method for context-aware document ranking.


翻译:搜索会话中的背景信息已被证明对捕捉用户搜索意图有用。 现有的研究探索了会话中的用户行为序列,以不同方式加强查询建议或文件排序。 然而, 用户行为序列往往被视为反映用户行为的确定和精确信号。 事实上,它变化很大: 用户对相同意图的询问可以不同, 并且可以点击不同的文档。 为了了解用户行为序列的更稳健的表述方式, 我们提出了一个基于对比性学习的方法, 这种方法考虑到用户行为顺序的可能变化。 具体地说, 我们提出了三种数据增强战略, 以产生类似的用户行为序列变异, 并将它们与其他序列进行比较。 在这样做时, 模型被迫在可能的变异方面更加稳健。 优化的序列表示方式被纳入文件排序。 对两个真实的查询日志数据集的实验表明, 我们提议的模型大大超越了当前设计的方法, 这表明了我们的背景识别文件排序方法的有效性 。

7
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2021年6月12日
专知会员服务
52+阅读 · 2020年12月24日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Privacy-Preserving News Recommendation Model Learning
Arxiv
31+阅读 · 2020年9月21日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关论文
Top
微信扫码咨询专知VIP会员