The widespread application of modern machine learning has increased the need for robust statistical algorithms. This work studies one such fundamental statistical measure known as the Tukey depth. We study the problem in the continuum (population) limit. In particular, we derive the associated necessary conditions, which take the form of a first-order partial differential equation. We discuss the classical interpretation of this necessary condition as the viscosity solution of a Hamilton-Jacobi equation, but with a non-classical Hamiltonian with discontinuous dependence on the gradient at zero. We prove that this equation possesses a unique viscosity solution and that this solution always bounds the Tukey depth from below. In certain cases, we prove that the Tukey depth is equal to the viscosity solution, and we give some illustrations of standard numerical methods from the optimal control community which deal directly with the partial differential equation. We conclude by outlining several promising research directions both in terms of new numerical algorithms and theoretical challenges.
翻译:现代机器学习的广泛应用增加了对稳健统计算法的需求。 这项工作研究了一个被称为“ Tukey 深度” 的基本统计尺度。 我们研究了连续(人口)限制中的问题。 特别是, 我们得出了相关的必要条件, 其形式是一阶部分差异方程式。 我们讨论了对这一必要条件的古典解释,认为这是汉密尔顿- 贾科比方程式的粘度解决方案,但有一个非古典的汉密尔顿人,不连续依赖零度的梯度。 我们证明这个方程式拥有独特的粘度解决方案,而且这个解决方案总是将Tukey的深度与下面的深度相连接。 在某些情况下,我们证明Tukey的深度等同于粘度解决方案, 我们从直接处理部分差异方程式的最佳控制界中提供了一些标准数字方法的示例。 我们最后从新的数字算法和理论挑战的角度概述了几个有希望的研究方向。