As a unique biometric that can be perceived at a distance, gait has broad applications in person authentication, social security and so on. Existing gait recognition methods pay attention to extracting either spatial or spatiotemporal representations. However, they barely consider extracting diverse motion features, a fundamental characteristic in gaits, from gait sequences. In this paper, we propose a novel motion-aware spatiotemporal feature learning network for gait recognition, termed GaitMAST, which can unleash the potential of motion-aware features. In the shallow layer, specifically, we propose a dual-path frame-level feature extractor, in which one path extracts overall spatiotemporal features and the other extracts motion salient features by focusing on dynamic regions. In the deeper layers, we design a two-branch clip-level feature extractor, in which one focuses on fine-grained spatial information and the other on motion detail preservation. Consequently, our GaitMAST preserves the individual's unique walking patterns well, further enhancing the robustness of spatiotemporal features. Extensive experimental results on two commonly-used cross-view gait datasets demonstrate the superior performance of GaitMAST over existing state-of-the-art methods. On CASIA-B, our model achieves an average rank-1 accuracy of 94.1%. In particular, GaitMAST achieves rank-1 accuracies of 96.1% and 88.1% under the bag-carry and coat wearing conditions, respectively, outperforming the second best by a large margin and demonstrating its robustness against spatial variations.


翻译:作为一种在远处可以看到的独特生物测定,运动具有广泛的个人认证、社会保障等应用。现有的运动识别方法在个人认证、社会安全等方面有着广泛的应用。现有的运动识别方法注重提取空间或时空表达方式。然而,它们几乎不考虑从动作序列中提取各种运动特征,这是从动作序列中取曲子中的一个基本特征。在本文中,我们建议建立一个新的运动觉察空间特征学习网络,称为GaitMAST,它可以释放运动认知特征的潜力。在浅层中,具体地说,我们提出了双向框架级特征提取器,其中一种路径提取了总体的超声波时空特征和其他动作动作特征。在更深层的层中,我们设计了两层运动觉察视速度特征,其中一项侧重于精细的空间信息,另一项是关于运动细节保存的。因此,我们的GaitMASTT第二模型保存了个人独特的行走模式,通过进一步增强时空特征的坚固性,进一步强化了深度特征。在两种路径上的实验性能度上提取性能,分别提取了总体的精度特征,其中的精度特征中分别提取了总体的精度特征。在动态区域空间特征中提取性特征中提取性特征中分别提取性特征中提取了整个的精度特征,通过侧重于性地提取性地提取性地提取性地提取性地提取性地提取性地提取性能特征。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员