This paper proposes an algorithmic method to heuristically solve the famous Travelling Salesman Problem (TSP) when the salesman's path evolves in continuous state space and discrete time but with otherwise arbitrary (nonlinear) dynamics. The presented method is based on the framework of Symbolic Control. In this way, our method returns a provably correct state-feedback controller for the underlying coverage specification, which is the TSP leaving out the requirement for optimality on the route. In addition, we utilize the Lin-Kernighan-Helsgaun TSP solver to heuristically optimize the cost for the overall taken route. Two examples, an urban parcel delivery task and a UAV reconnaissance mission, greatly illustrate the powerfulness of the proposed heuristic.
翻译:本文建议了一种算法方法,用于在销售员的路径在连续状态空间和离散时间演变,但有其他任意(非线性)动态的情况下,以逻辑方式解决著名的旅行推销员问题(TSP ) 。 介绍的方法以符号控制框架为基础。 这样, 我们的方法返回了一种可以确认正确的国家反馈控制器, 用于基本覆盖规格, 即 TSP 排除了对路线上最佳性的要求。 此外, 我们用Lin- Kernighan- Helsgaun TSP 解答器优化了整个路线的成本。 有两个例子, 即城市包裹交付任务和UAVS 侦察任务, 有力地说明了拟议的超光速性。