This paper examines social web content moderation from two key perspectives: automated methods (machine moderators) and human evaluators (human moderators). We conduct a noise audit at an unprecedented scale using nine machine moderators trained on well-known offensive speech data sets evaluated on a corpus sampled from 92 million YouTube comments discussing a multitude of issues relevant to US politics. We introduce a first-of-its-kind data set of vicarious offense. We ask annotators: (1) if they find a given social media post offensive; and (2) how offensive annotators sharing different political beliefs would find the same content. Our experiments with machine moderators reveal that moderation outcomes wildly vary across different machine moderators. Our experiments with human moderators suggest that (1) political leanings considerably affect first-person offense perspective; (2) Republicans are the worst predictors of vicarious offense; (3) predicting vicarious offense for the Republicans is most challenging than predicting vicarious offense for the Independents and the Democrats; and (4) disagreement across political identity groups considerably increases when sensitive issues such as reproductive rights or gun control/rights are discussed. Both experiments suggest that offense, is indeed, highly subjective and raise important questions concerning content moderation practices.
翻译:本文从两个关键角度审视社交网络内容的温和性:自动化方法(机器主持人)和人文评价员(人文主持人),我们使用9名在著名的攻击性言语数据集方面受过训练的机器主持人进行空前规模的噪音审计。我们用9 200万YouTube评论的样本对大量美国政治相关问题进行了评估。我们引入了一组其首类的替代罪行数据。我们问说明员:(1) 如果他们发现某个社交媒体的进攻性攻击性事件;和(2) 分享不同政治信仰的冒犯性告示员如何找到相同内容。我们与机器主持人的实验显示,不同机器主持人之间的温和结果大相径庭。我们与人文主持人的实验表明:(1) 政治牵线对第一人罪的视角有很大影响;(2) 共和党人是最坏的预测者;(3) 对共和党的替代罪行比预测独立党和民主党的替代罪行更具挑战性;以及(4) 当讨论生殖权或枪支控制/权利等敏感问题时,政治身份群体之间的分歧大为增加。两个实验都表明,犯罪确实具有高度主观性和重要的内容。