In this paper we provide a large family of rank-metric codes, which contains properly the codes recently found by Longobardi and Zanella (2021) and by Longobardi, Marino, Trombetti and Zhou (2021). These codes are $\mathbb{F}_{q^{2t}}$-linear of dimension $2$ in the space of linearized polynomials over $\mathbb{F}_{q^{2t}}$, where $t$ is any integer greater than $2$, and we prove that they are maximum rank distance codes. For $t\ge 5$, we determine their equivalence classes and these codes turn out to be inequivalent to any other construction known so far, and hence they are really new.
翻译:在本文中,我们提供了一大批等级代码,其中恰当地包含了Longobardi和Zanella(2021年)以及Longobardi、Marino、Trombetti和Zhou(2021年)最近发现的代码,这些代码是2美元的线性多面体空间中的2美元,其中美元为超过$mathbb{Fq ⁇ 2t ⁇ 2t ⁇ 2美元,其整数超过$2美元,我们证明它们是最高等级的距离代码。对于5美元,我们确定其等值类别,这些代码与迄今为止已知的任何其他工程相当,因此这些代码是全新的。