Feature extraction plays an important role in visual localization. Unreliable features on dynamic objects or repetitive regions will disturb robust feature matching and thus, challenge indoor localization greatly. To conquer such an issue, we propose a novel network, RaP-Net, to simultaneously predict region-wise invariability and point-wise reliability, and then extract features by considering both of them. We also introduce a new dataset, named OpenLORIS-Location, to train proposed network. The dataset contains 1553 indoor images from 93 indoor locations. Various appearance changes between images of the same location are included and they can help to learn the invariability in typical indoor scenes. Experimental results show that the proposed RaP-Net trained with the OpenLORIS-Location dataset achieves an excellent performance in the feature matching task and significantly outperforms state-of-the-arts feature algorithms in indoor localization. The RaP-Net code and dataset are available at https://github.com/ivipsourcecode/RaP-Net.


翻译:在视觉本地化中,地物提取具有重要作用。 动态物体或重复区域上不可信任的特征将干扰强力特征匹配,从而对室内本地化提出极大挑战。 为了克服这样一个问题,我们提议建立一个新颖的网络RaP-Net, 以同时预测区域性易变性和点性可靠性, 然后通过考虑这两个问题来提取特征。 我们还引入了一个新的数据集,名为OpenLoris-Location, 以培训拟议的网络。 该数据集包含来自93个室内地点的1553个室内图像。 该数据集包含同一地点图像之间的各种外观变化,它们有助于了解典型室内场景中的不可变性。 实验结果显示,通过OpenLoris-Location数据集培训的拟议RaP-Net在功能匹配任务中取得了优异于功能的功能性,大大超越了室内本地化中艺术特性的状态算法。 RaP-Net 代码和数据集可在https://github.com/ivippologue/RaP-Net上查阅。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年4月3日
专知会员服务
19+阅读 · 2021年4月1日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
4+阅读 · 2018年3月19日
Arxiv
9+阅读 · 2018年3月10日
Arxiv
3+阅读 · 2018年3月5日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关VIP内容
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员