Feature extraction plays an important role in visual localization. Unreliable features on dynamic objects or repetitive regions will disturb robust feature matching and thus, challenge indoor localization greatly. To conquer such an issue, we propose a novel network, RaP-Net, to simultaneously predict region-wise invariability and point-wise reliability, and then extract features by considering both of them. We also introduce a new dataset, named OpenLORIS-Location, to train proposed network. The dataset contains 1553 indoor images from 93 indoor locations. Various appearance changes between images of the same location are included and they can help to learn the invariability in typical indoor scenes. Experimental results show that the proposed RaP-Net trained with the OpenLORIS-Location dataset achieves an excellent performance in the feature matching task and significantly outperforms state-of-the-arts feature algorithms in indoor localization. The RaP-Net code and dataset are available at https://github.com/ivipsourcecode/RaP-Net.
翻译:在视觉本地化中,地物提取具有重要作用。 动态物体或重复区域上不可信任的特征将干扰强力特征匹配,从而对室内本地化提出极大挑战。 为了克服这样一个问题,我们提议建立一个新颖的网络RaP-Net, 以同时预测区域性易变性和点性可靠性, 然后通过考虑这两个问题来提取特征。 我们还引入了一个新的数据集,名为OpenLoris-Location, 以培训拟议的网络。 该数据集包含来自93个室内地点的1553个室内图像。 该数据集包含同一地点图像之间的各种外观变化,它们有助于了解典型室内场景中的不可变性。 实验结果显示,通过OpenLoris-Location数据集培训的拟议RaP-Net在功能匹配任务中取得了优异于功能的功能性,大大超越了室内本地化中艺术特性的状态算法。 RaP-Net 代码和数据集可在https://github.com/ivippologue/RaP-Net上查阅。