Let $P$ be a polytope. The hitting number of $P$ is the smallest size of a hitting set of the facets of $P$, i.e., a subset of vertices of $P$ such that every facet of $P$ has a vertex in the subset. An extended formulation of $P$ is the description of a polyhedron that linearly projects to $P$. We show that, if $P$ is the base polytope of any matroid, then $P$ admits an extended formulation whose size depends linearly on the hitting number of $P$. Our extended formulations generalize those of the spanning tree polytope given by Martin and Wong. Our proof is simple and short, and it goes through the deep connection between extended formulations and communication protocols.
翻译:$P 是一个多面体。 $P 的点击数是一连串的撞击数中最小的大小, 也就是一小块P$的脊椎, 也就是一小块P$的螺旋, 这样一小块P$的每面都有一个顶点。 $P 的扩大配方是描述线性工程的多面体。 我们显示, 如果美元是任何机器人的基础多面体, 那么$P 就会承认一种长的配方, 其大小直线取决于$P 美元。 我们的扩展配方概括了马丁和黄的横贯树的多面体。 我们的证据简单而简短, 并且通过延伸配方和通信协议之间的深层联系 。