Relational semigroups with domain and range are a useful tool for modelling nondeterministic programs. We prove that the representation class of domain-range semigroups with demonic composition is not finitely axiomatisable. We extend the result for ordered domain algebras and show that any relation algebra reduct signature containing domain, range, converse, and composition, but no negation, meet, nor join has the finite representation property. That is any finite representable structure of such a signature is representable over a finite base. We survey the results in the area of the finite representation property.
翻译:带有域和范围的半关系组是模拟非确定性程序的一个有用工具。 我们证明,具有恶魔成分的域- 域- 域- 域- 域- 半组的表示型类并非有一定的绝对现象性。 我们扩展了有命令域代数的结果, 并显示任何包含域、 范围、 反向和构成的代数转引签字关系, 但是没有否定、 相遇或合并的代数属性。 这是这种签字的任何可代表的有限结构, 都可以代表一个有限的基数。 我们调查有限代数属性领域的结果 。