We consider the second-order in time Strang-splitting approximation for vector-valued and matrix-valued Allen-Cahn equations. Both the linear propagator and the nonlinear propagator are computed explicitly. For the vector-valued case, we prove the maximum principle and unconditional energy dissipation for a judiciously modified energy functional. The modified energy functional is close to the classical energy up to $\mathcal O(\tau)$ where $\tau$ is the splitting step. For the matrix-valued case, we prove a sharp maximum principle in the matrix Frobenius norm. We show modified energy dissipation under very mild splitting step constraints. We exhibit several numerical examples to show the efficiency of the method as well as the sharpness of the results.
翻译:我们考虑的是矢量估值和矩阵估值的Allen-Cahn方程式的时序分差近似值。 线性传播器和非线性传播器都是明确计算的。 对于矢量估值的个案,我们证明对明智地修改能源功能来说,最大原理和无条件的能量消耗是最高原理和无条件的。 修改后的能源功能接近传统能源, 最高为$mathcal O(\tau) 。 美元是分解步骤。 对于矩阵估值的个案, 我们证明在矩阵法罗贝纽斯规范中, 是一个尖锐的最大原则。 我们显示了在极轻的分化步骤限制下经过修改的能量消耗。 我们展示了几个数字例子, 以显示该方法的效率以及结果的清晰度。