Graph Convolutional Networks (GCNs) are typically studied through the lens of Euclidean geometry. Non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data, but cannot align well with data of mixed topologies. We consider a larger class of semi-Riemannian manifolds with indefinite metric that generalize hyperboloid and sphere as well as their submanifolds. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected semi-Riemannian manifolds. As a consequence, we derive a principled Semi-Riemannian GCN that first models data in semi-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.
翻译:突变网络(GCNs)通常是通过欧几里得几何的透镜来研究的。 非欧几里得里曼元为嵌入等级或球体数据提供了具体的感化偏差,但无法与混合地表数据相匹配。 我们考虑的是更大等级的半里曼元,具有不定期度,可以泛化超离子体和球体,以及它们的亚皮层。 我们开发了新的大地学工具,可以将神经网络的操作扩展至地理上断开的半里曼元。 因此,我们得出了一个有原则的半里曼式GCN, 在图形神经网络中,该半里曼元的常值非零曲性半里曼元中首次模型数据。 我们的方法提供了一种具有足够灵活性的几里曼性偏差,足以模拟像循环的等级图表那样的混合型表。 环境学结果表明,我们的方法在嵌入复杂地表图时,比里曼的对应方差。