The paper presents a novel learning-based sampling strategy that guarantees rejection-free sampling of the free space under both biased and approximately uniform conditions, leveraging multivariate kernel densities. Historical data from past states of a given autonomous system is leveraged to estimate a non-parametric probabilistic description of the domain, which in turn also describes the free space where feasible solutions of the motion planning problem are likely to be found. The tuning parameters of the kernel density estimator, the bandwidth and the kernel, are then used to alter the description of the free space so that no sampled states can fall outside the originally defined space. The proposed method is demonstrated in two real-life case studies: An autonomous surface vessel (2D) and an autonomous drone (3D). Two planning problems are solved, showing that the proposed approximately uniform sampling scheme is capable of guaranteeing rejection-free sampling of the considered workspace. Furthermore, the planning effectiveness of the proposed method is statistically validated using Monte Carlo simulations.
翻译:本文介绍了一种新的基于学习的抽样战略,它保证在偏差和大致统一的条件下对自由空间进行无排斥抽样,利用多变内核密度;利用某个自主系统过去状态的历史数据来估计对域的非参数概率性描述,这反过来又描述了有可能找到可行的行动规划问题解决办法的自由空间;然后,利用内核密度测深仪、带宽和内核调参数来改变自由空间的描述,使任何被抽样国家都无法在最初确定的空间之外。 拟议的方法在两个实际生活中的案例研究中均有说明:自主地表船只(2D)和自主无人驾驶飞机(3D)。 解决了两个规划问题,表明拟议的大致统一的取样办法能够保证对考虑的工作空间进行无排斥抽样。此外,拟议的方法的规划效力通过蒙特卡洛模拟在统计上得到验证。