We propose a new splitting method for strong numerical solution of the Cox-Ingersoll-Ross model. For this method, applied over both deterministic and adaptive random meshes, we prove a uniform moment bound and strong error results of order $1/4$ in $L_1$ and $L_2$ for the parameter regime $\kappa\theta>\sigma^2$. Our scheme does not fall into the class analyzed in Hefter & Herzwurm (2018) where convergence of maximum order $1/4$ of a novel class of Milstein-based methods over the full range of parameter values is shown. Hence we present a separate convergence analysis before we extend the new method to cover all parameter values by introducing a 'soft zero' region (where the deterministic flow determines the approximation) giving a hybrid type method to deal with the reflecting boundary. From numerical simulations we observe a rate of order $1$ when $\kappa\theta>\sigma^2$ rather than $1/4$. Asymptotically, for large noise, we observe that the rates of convergence decrease similarly to those of other schemes but that the proposed method displays smaller error constants. Our results also serve as supporting numerical evidence that the conjecture of Hefter & Jentzen (2019) holds true for methods with non-uniform Wiener increments.
翻译:我们为Cox- Ingersoll-Ross 模型的强大数字解决方案提出了新的分解方法。 对于这一方法, 既应用于确定性和适应性随机的混合模件, 我们证明一个统一的时刻, 并且对参数制度 $\ kapa\theta\\sigma2$2美元 和 $L_2美元 表示强烈的错误结果。 我们的计划不属于Hefter & Herzwurm (2018年) 所分析的类别, 赫夫特 和 Herzwurm (2018年) 显示一个基于 Milstein 的新型方法的最大订单 1: 4$ 的趋同于全部参数值。 因此, 在我们通过引入“ 软零” 区域( 确定性流动决定近似值) 和 $2美元 参数系统, 来扩大新方法的范围以涵盖所有参数值, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.