The dichromatic number $\vec{\chi}(D)$ of a digraph $D$ is the least integer $k$ for which $D$ has a coloring with $k$ colors such that there is no monochromatic directed cycle in $D$. The digraphs considered here are finite and may have antiparallel arcs, but no parallel arcs. A digraph $D$ is called $k$-critical if each proper subdigraph $D'$ of $D$ satisfies $\vec{\chi}(D')<\vec{\chi}(D)=k$. For integers $k$ and $n$, let $\overrightarrow{\mathrm{ext}}(k,n)$ denote the minimum number of arcs possible in a $k$-critical digraph of order $n$. It is easy to show that $\overrightarrow{\mathrm{ext}}(2,n)=n$ for all $n\geq 2$, and $\overrightarrow{\mathrm{ext}}(3,n)\geq 2n$ for all possible $n$, where equality holds if and only if $n$ is odd and $n\geq 3$. As a main result we prove that if $n, k$ and $p$ are integers with $n=k+p$ and $2\leq p \leq k-1$, then $\overrightarrow{\mathrm{ext}}(k,n)=2({\binom{n}{2}} - (p^2+1))$, and we give an exact characterisation of $k$-critical digraphs for which equality holds. This generalizes a result about critical graphs obtained in 1963 by Tibor Gallai.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
44+阅读 · 2022年2月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员