The ability to decompose scenes into their object components is a desired property for autonomous agents, allowing them to reason and act in their surroundings. Recently, different methods have been proposed to learn object-centric representations from data in an unsupervised manner. These methods often rely on latent representations learned by deep neural networks, hence requiring high computational costs and large amounts of curated data. Such models are also difficult to interpret. To address these challenges, we propose the Phase-Correlation Decomposition Network (PCDNet), a novel model that decomposes a scene into its object components, which are represented as transformed versions of a set of learned object prototypes. The core building block in PCDNet is the Phase-Correlation Cell (PC Cell), which exploits the frequency-domain representation of the images in order to estimate the transformation between an object prototype and its transformed version in the image. In our experiments, we show how PCDNet outperforms state-of-the-art methods for unsupervised object discovery and segmentation on simple benchmark datasets and on more challenging data, while using a small number of learnable parameters and being fully interpretable.


翻译:将场景分解到其对象组件中的能力是自主代理器的一种理想属性,允许它们在其周围进行理性和行为。最近,提出了不同的方法,从数据中以不受监督的方式学习以物体为中心的表达方式。这些方法往往依赖深层神经网络所学的潜在表达方式,因此需要高昂的计算成本和大量整理数据。这些模型也难以解释。为了应对这些挑战,我们提议了阶段校正分解网络(PCDNet),这是一个将场景分解成其对象组件的新模型,它代表着一组已学习的原型的转变版本。PCDNet的核心构件是阶段校正单元(PC Cell),该单元利用图像的频率-主路面表示方式来估计物体原型与图像中已变版本之间的转换情况。在我们的实验中,我们展示了PCDNet如何在简单基准数据集和更具挑战性的数据上,同时使用少量的可学习参数和完全可解释的参数,从而在图像中超越了状态。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员