Markov chain Monte Carlo (MCMC) is an all-purpose tool that allows one to generate dependent replicates from a posterior distribution for effectively any Bayesian hierarchical model. As such, MCMC has become a standard in Bayesian statistics. However, convergence issues, tuning, and the effective sample size of the MCMC are nontrivial considerations that are often overlooked or can be difficult to assess. Moreover, these practical issues can produce a significant computational burden. This motivates us to consider finding closed-form expressions of the posterior distribution that are computationally straightforward to sample from directly. We focus on a broad class of Bayesian generalized linear mixed-effects models (GLMM) that allows one to jointly model data of different types (e.g., Gaussian, Poisson, and binomial distributed observations). Exact sampling from the posterior distribution for Bayesian GLMMs is such a difficult problem that it is now arguably overlooked as a possible problem to solve. To solve this problem, we derive a new class of distributions that gives one the flexibility to specify the prior on fixed and random effects to be any conjugate multivariate distribution. We refer to this new distribution as the generalized conjugate multivariate (GCM) distribution, and several technical results are provided. The expression of the exact posterior distribution is given along with the steps to obtain direct independent simulations from the posterior distribution. These direct simulations have an efficient projection/regression form, and hence, we refer to our method as Exact Posterior Regression (EPR). Several theoretical results are developed that create the foundation for EPR. Illustrative examples are provided including a simulation study and an analysis of estimates from the U.S. Census Bureau's American Community Survey (ACS).
翻译:Markov 链 Monte Carlo(MCMC ) 是一个全功能工具,它允许人们从任何巴伊西亚等级模型的后端分布中产生依赖性复制。 因此, MCMC 已经成为巴伊西亚统计的一个标准。 然而, MC 的趋同、 调制和有效样本规模是非边际考虑, 常常被忽视或难以评估。 此外, 这些实际问题可以产生巨大的计算负担。 这促使我们考虑从任何贝叶斯亚氏等级模型中生成从后端分布到直接样本的反向复制。 我们侧重于一个广泛的巴伊西亚通用线性线性混合效应模型(GLMM ), 从而允许人们联合模拟不同类型( 如高萨、 Poisson 和 binomomical 分布观察) 的数据。 从Bayesian GLMM 的后端分布的Exact 取样是一个非常困难的问题, 现在可以被忽略为可能解决的一个问题。 为了解决这个问题, 我们从一个新的分布类别, 我们从一个具有一种灵活性的流分配, 包括 IMGl Ex- mate Exal dial dial resulation resulation resulation 。