Markov chain Monte Carlo (MCMC) is an all-purpose tool that allows one to generate dependent replicates from a posterior distribution for effectively any Bayesian hierarchical model. As such, MCMC has become a standard in Bayesian statistics. However, convergence issues, tuning, and the effective sample size of the MCMC are nontrivial considerations that are often overlooked or can be difficult to assess. Moreover, these practical issues can produce a significant computational burden. This motivates us to consider finding closed-form expressions of the posterior distribution that are computationally straightforward to sample from directly. We focus on a broad class of Bayesian generalized linear mixed-effects models (GLMM) that allows one to jointly model data of different types (e.g., Gaussian, Poisson, and binomial distributed observations). Exact sampling from the posterior distribution for Bayesian GLMMs is such a difficult problem that it is now arguably overlooked as a possible problem to solve. To solve this problem, we derive a new class of distributions that gives one the flexibility to specify the prior on fixed and random effects to be any conjugate multivariate distribution. We refer to this new distribution as the generalized conjugate multivariate (GCM) distribution, and several technical results are provided. The expression of the exact posterior distribution is given along with the steps to obtain direct independent simulations from the posterior distribution. These direct simulations have an efficient projection/regression form, and hence, we refer to our method as Exact Posterior Regression (EPR). Several theoretical results are developed that create the foundation for EPR. Illustrative examples are provided including a simulation study and an analysis of estimates from the U.S. Census Bureau's American Community Survey (ACS).


翻译:Markov 链 Monte Carlo(MCMC ) 是一个全功能工具,它允许人们从任何巴伊西亚等级模型的后端分布中产生依赖性复制。 因此, MCMC 已经成为巴伊西亚统计的一个标准。 然而, MC 的趋同、 调制和有效样本规模是非边际考虑, 常常被忽视或难以评估。 此外, 这些实际问题可以产生巨大的计算负担。 这促使我们考虑从任何贝叶斯亚氏等级模型中生成从后端分布到直接样本的反向复制。 我们侧重于一个广泛的巴伊西亚通用线性线性混合效应模型(GLMM ), 从而允许人们联合模拟不同类型( 如高萨、 Poisson 和 binomomical 分布观察) 的数据。 从Bayesian GLMM 的后端分布的Exact 取样是一个非常困难的问题, 现在可以被忽略为可能解决的一个问题。 为了解决这个问题, 我们从一个新的分布类别, 我们从一个具有一种灵活性的流分配, 包括 IMGl Ex- mate Exal dial dial resulation resulation resulation 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月21日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员