This paper considers the problem of Byzantine fault-tolerance in distributed multi-agent optimization. In this problem, each agent has a local cost function, and in the fault-free case, the goal is to design a distributed algorithm that allows all the agents to find a minimum point of all the agents' aggregate cost function. We consider a scenario where some agents might be Byzantine faulty that renders the original goal of computing a minimum point of all the agents' aggregate cost vacuous. A more reasonable objective for an algorithm in this scenario is to allow all the non-faulty agents to compute the minimum point of only the non-faulty agents' aggregate cost. Prior work shows that if there are up to $f$ (out of $n$) Byzantine agents then a minimum point of the non-faulty agents' aggregate cost can be computed exactly if and only if the non-faulty agents' costs satisfy a certain redundancy property called $2f$-redundancy. However, $2f$-redundancy is an ideal property that can be satisfied only in systems free from noise or uncertainties, which can make the goal of exact fault-tolerance unachievable in some applications. Thus, we introduce the notion of $(f,\epsilon)$-resilience, a generalization of exact fault-tolerance wherein the objective is to find an approximate minimum point of the non-faulty aggregate cost, with $\epsilon$ accuracy. This approximate fault-tolerance can be achieved under a weaker condition that is easier to satisfy in practice, compared to $2f$-redundancy. We obtain necessary and sufficient conditions for achieving $(f,\epsilon)$-resilience characterizing the correlation between relaxation in redundancy and approximation in resilience. In case when the agents' cost functions are differentiable, we obtain conditions for $(f,\epsilon)$-resilience of the distributed gradient-descent method when equipped with robust gradient aggregation.


翻译:本文考虑的是Byzantine在分布式多试剂优化中的错误容忍度问题。 在此问题上, 每个代理商都有本地的成本功能, 在无过失的案例中, 目标是设计一个分布式算法, 让所有代理商都能找到所有代理商总成本函数的最小点。 我们考虑一种假设, 一些代理商可能是 Byzantine 错误, 使得计算所有代理商总成本最低点的最初目标变得空洞。 在这个假设中, 一个更合理的算法目标就是让所有非腐败的代理商只计算非腐败代理商总成本的最小点。 之前的工作显示, 如果所有代理商都能够找到所有代理商总成本的最小点 。 当非欺诈代理商总成本达到一定的冗余值时, $2flon- redudidivality 是一个理想的属性, 只有在系统里, 而不是噪音或不确定性的最小值 。 之前的工作表明, 当我们实现了一个精确的准确性目标时, 一个不精确的准确性成本, 当我们找到一个不虚伪的准确性 。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
已删除
将门创投
5+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员