The minimum linear ordering problem (MLOP) seeks to minimize an aggregated cost $f(\cdot)$ due to an ordering $\sigma$ of the items (say $[n]$), i.e., $\min_{\sigma} \sum_{i\in [n]} f(E_{i,\sigma})$, where $E_{i,\sigma}$ is the set of items that are mapped by $\sigma$ to indices at most $i$. This problem has been studied in the literature for various special cases of the cost function $f$, and in a general setting for a submodular or supermodular cost $f$ [ITT2012]. Though MLOP was known to be NP-hard for general submodular functions, it was unknown whether the special case of graphic matroid MLOP (with $f$ being the matroid rank function of a graph) was polynomial-time solvable. Following this motivation, we explore related classes of linear ordering problems, including symmetric submodular MLOP, minimum latency vertex cover, and minimum sum vertex cover. We show that the most special cases of our problem, graphic matroid MLOP and minimum latency vertex cover, are both NP-hard. We further expand the toolkit for approximating MLOP variants: using the theory of principal partitions, we show a $2-\frac{1+\ell_{f}}{1+|E|}$ approximation to monotone submodular MLOP, where $\ell_{f}=\frac{f(E)}{\max_{x\in E}f(\{x\})}$ satisfies $1 \leq \ell_f \leq |E|$. Thus our result improves upon the best known bound of $2-\frac{2}{1+|E|}$ by Iwata, Tetali, and Tripathi [ITT2012]. This leads to a $2-\frac{1+r(E)}{1+|E|}$ approximation for the matroid MLOP, corresponding to the case when $r$ is the rank function of a given matroid. Finally, we show that MLVC can be $4/3$ approximated, matching the integrality gap of its vanilla LP relaxation.


翻译:最小线性订购问题 (MLOP) 寻求将总成本 $f(\ cdot) 降到最低。 这个问题在文献中已经研究过, 用于成本函数的各种特殊案例 $( $) ; 美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 3美元 ; 最低线性 ; 3美元 ; 3美元 ; 3美元 美元 ; 3美元 美元 ; 以美元计价 ; 最多 ; 3美元 ; 3美元; 3美元 ; 3美元; 20美元 ; 。 在文献中, 我们探索相关的线性排序问题, 包括 3美元 ; 3美元 ; 5美元; 3美元; 3美元; 3美元; 3美元; 3美元; 3美元; 3美元; 3美元; 3美元; 3美元; 3美元; 美元; 3美元=

0
下载
关闭预览

相关内容

最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
专知会员服务
50+阅读 · 2020年12月14日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年4月25日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月30日
VIP会员
相关VIP内容
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
专知会员服务
50+阅读 · 2020年12月14日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
3+阅读 · 2019年4月25日
Top
微信扫码咨询专知VIP会员