The consumer Internet of Things (IoT) have developed in recent years. Mass IoT devices are constructed to build a huge communications network. But these devices are insecure in reality, it means that the communications network are exposed by the attacker. Moreover, the IoT communication network also faces with variety of sudden errors. Therefore, it easily leads to that is vulnerable with the threat of attacker and system failure. The severe situation of IoT communication network motivates the development of new techniques to automatically detect multi-anomaly. In this paper, we propose SS-VTCN, a semi-supervised network for IoT multiple anomaly detection that works well effectively for IoT communication network. SS-VTCN is designed to capture the normal patterns of the IoT traffic data based on the distribution whether it is labeled or not by learning their representations with key techniques such as Variational Autoencoders and Temporal Convolutional Network. This network can use the encode data to predict preliminary result, and reconstruct input data to determine anomalies by the representations. Extensive evaluation experiments based on a benchmark dataset and a real consumer smart home dataset demonstrate that SS-VTCN is more suitable than supervised and unsupervised method with better performance when compared other state-of-art semi-supervised method.


翻译:近年来,消费物联网(IoT)已经发展了。 Mass IoT 设备是用来建立大型通信网络的。但是这些设备在现实中不安全,这意味着通信网络被攻击者暴露。此外,IoT通信网络还面临各种突发错误。因此,它很容易导致它易受攻击者的威胁和系统故障的威胁。IoT通信网络的严峻状况促使开发自动检测多种异常的新技术。在本文中,我们提议建立SS-VTCN,一个半监督的IoT多重异常检测网络,这个网络对IoT通信网络有效。SS-VTCN的设计是为了捕捉到基于其分布的IoT流量数据的正常模式,不管它是否贴有攻击者标签和系统失灵的威胁。IoT通信网络的严峻状况促使它发展出自动导航器和温度变迁网络等关键技术。这个网络可以使用编码数据来预测初步结果,并重建通过演示来确定异常情况。基于基准数据集的大规模评估实验,而实际消费者智能家庭流量数据比其他监督性能更精确的系统演示方法更能演示。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
112+阅读 · 2020年11月16日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2019年4月8日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员