We present a new approach to randomized distributed graph coloring that is simpler and more efficient than previous ones. In particular, it allows us to tackle the $(\operatorname{deg}+1)$-list-coloring (D1LC) problem, where each node $v$ of degree $d_v$ is assigned a palette of $d_v+1$ colors, and the objective is to find a proper coloring using these palettes. While for $(\Delta+1)$-coloring (where $\Delta$ is the maximum degree), there is a fast randomized distributed $O(\log^3\log n)$-round algorithm (Chang, Li, and Pettie [SIAM J. Comp. 2020]), no $o(\log n)$-round algorithms are known for the D1LC problem. We give a randomized distributed algorithm for D1LC that is optimal under plausible assumptions about the deterministic complexity of the problem. Using the recent deterministic algorithm of Ghaffari and Kuhn [FOCS2021], our algorithm runs in $O(\log^3 \log n)$ time, matching the best bound known for $(\Delta+1)$-coloring. In addition, it colors all nodes of degree $\Omega(\log^7 n)$ in $O(\log^* n)$ rounds. A key contribution is a subroutine to generate slack for D1LC. When placed into the framework of Assadi, Chen, and Khanna [SODA2019] and Alon and Assadi [APPROX/RANDOM2020], this almost immediately leads to a palette sparsification theorem for D1LC, generalizing previous results. That gives fast algorithms for D1LC in three different models: an $O(1)$-round algorithm in the MPC model with $\tilde{O}(n)$ memory per machine; a single-pass semi-streaming algorithm in dynamic streams; and an $\tilde{O}(n\sqrt{n})$-time algorithm in the standard query model.


翻译:我们为随机分布式图表颜色提出了一个比以往更简单、更有效率的新方法 。 特别是, 它允许我们解决$( operatorname{ deg} 1) 美元列表颜色( D1LC) 的问题, 每一个节点$v$d\ v美元 美元, 给D1LC问题指定了一个调色板, 目标是用这些调色板找到一个适当的色度。 $( delta+1) 美元( $\ Delta$ 是最大度 ), 快速随机分配 $( log_ 1) 美元( didolog_ 1) 美元列表颜色( D1) 。 特别是, 它能解决 $( log_ 1) 的调色( li, 和 Pettie (SIM J. comp. ) 的调色( 美元) 问题。 我们给 D1LC 的随机分布式算法, 在关于问题确定性复杂度的三度假设下, 将 Ghaffari 和 Kuhn [ FOC_20211] 的调算算算算算法, 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
已删除
将门创投
6+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
已删除
将门创投
6+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员