Discovering governing equations from data is critical for diverse scientific disciplines as they can provide insights into the underlying phenomenon of dynamic systems. This work presents a new representation for governing equations by designing the Mathematical Operation Network (MathONet) with a deep neural network-like hierarchical structure. Specifically, the MathONet is stacked by several layers of unary operations (e.g., sin, cos, log) and binary operations (e.g., +,-), respectively. An initialized MathONet is typically regarded as a super-graph with a redundant structure, a sub-graph of which can yield the governing equation. We develop a sparse group Bayesian learning algorithm to extract the sub-graph by employing structurally constructed priors over the redundant mathematical operations. By demonstrating the chaotic Lorenz system, Lotka-Volterra system, and Kolmogorov-Petrovsky-Piskunov system, the proposed method can discover the ordinary differential equations (ODEs) and partial differential equations (PDEs) from the observations given limited mathematical operations, without any prior knowledge on possible expressions of the ODEs and PDEs.
翻译:从数据中发现治理方程式对于不同的科学学科至关重要,因为它们能够提供对动态系统基本现象的洞察力。 这项工作通过设计数学操作网络(Matsonet)和具有深神经网络结构的分级结构,为管理方程式提供了新的代表。 具体地说,数学运行由若干层的单项操作(如罪、 cos、 log)和二进制操作( 如, +-)相叠叠叠叠叠叠。 初始化的数学ONet通常被视为具有冗余结构的超级图, 其子图可以产生调节方程式。 我们开发了稀疏的贝叶斯族学习算法, 利用结构构建的图层来提取子图表, 利用了冗余数学操作的预结构。 通过演示混乱的洛伦茨系统、 Lotka- Volterra系统以及 Kolmogorov- Petrovsky- Piskunov 系统, 拟议的方法可以从有限的数学操作中找到普通的差式方程式和部分差式方程式, 。