Surface integral equation (SIE) methods are of great interest for the numerical solution of Maxwell's equations in the presence of homogeneous objects. However, existing SIE algorithms have limitations, either in terms of scalability, frequency range, or material properties. We present a scalable SIE algorithm based on the generalized impedance boundary condition which can efficiently handle, in a unified manner, both dielectrics and conductors over a wide range of conductivity, size and frequency. We devise an efficient strategy for the iterative solution of the resulting equations, with efficient preconditioners and an object-specific use of the adaptive integral method. With a rigorous error analysis, we demonstrate that the adaptive integral method can be applied over a wide range of frequencies and conductivities. Several numerical examples, drawn from different applications, demonstrate the accuracy and efficiency of the proposed algorithm.
翻译:地表整体方程(SIE)方法对于在同质物体存在的情况下对Maxwell方程式的数值解决方案非常感兴趣,然而,现有的SIE算法在可缩放性、频率范围或物质特性方面都有局限性。我们根据普遍的阻碍边界条件提出了一个可缩放的SIE算法,它能够以统一的方式有效处理不同传导性、大小和频率的电介和导导体。我们为由此产生的方程式的迭接解决方案设计了一个有效的战略,配有高效的前提条件和对适应性整体方法的特定对象的利用。我们通过严格的错误分析,证明适应性整体方法可以适用于广泛的频率和导体。从不同应用中提取的几个数字例子显示了拟议算法的准确性和效率。