We study best-of-both-worlds algorithms for bandits with switching cost, recently addressed by Rouyer, Seldin and Cesa-Bianchi, 2021. We introduce a surprisingly simple and effective algorithm that simultaneously achieves minimax optimal regret bound of $\mathcal{O}(T^{2/3})$ in the oblivious adversarial setting and a bound of $\mathcal{O}(\min\{\log (T)/\Delta^2,T^{2/3}\})$ in the stochastically-constrained regime, both with (unit) switching costs, where $\Delta$ is the gap between the arms. In the stochastically constrained case, our bound improves over previous results due to Rouyer et al., that achieved regret of $\mathcal{O}(T^{1/3}/\Delta)$. We accompany our results with a lower bound showing that, in general, $\tilde{\Omega}(\min\{1/\Delta^2,T^{2/3}\})$ regret is unavoidable in the stochastically-constrained case for algorithms with $\mathcal{O}(T^{2/3})$ worst-case regret.
翻译:我们研究的是2021年Rouyer、Seldin和Cesa-Bianchi最近谈到的用转换成本对强盗采用的最佳世界算法。我们引入了一个令人惊讶的简单而有效的算法,在明显的对抗背景下,同时实现美元最大最佳悔分(T ⁇ 2/3})(T ⁇ 2/3}),同时实现美元最低负负负负($mathcal{O}和美元负负负负($mathcal{O}(T ⁇ 1/3}/Delálog (T)/Deltaç%2,T ⁇ 2/3 ⁇ 3美元)。我们伴随我们的结果,一个较低的约束显示,一般而言,在(单位)转换成本($Delta_2,Delta$是武器之间的差额。在受限制的情况下,我们的限制比Rouyer等人之前的结果有所改进,从而实现了美元负($macal{Oelta}($2/3}(美元) 最遗憾是无法避免的。