This paper studies inference in randomized controlled trials with multiple treatments, where treatment status is determined according to a "matched tuples" design. Here, by a matched tuples design, we mean an experimental design where units are sampled i.i.d. from the population of interest, grouped into "homogeneous" blocks with cardinality equal to the number of treatments, and finally, within each block, each treatment is assigned exactly once uniformly at random. We first study estimation and inference for matched tuples designs in the general setting where the parameter of interest is a vector of linear contrasts over the collection of average potential outcomes for each treatment. Parameters of this form include but are not limited to standard average treatment effects used to compare one treatment relative to another. We first establish conditions under which a sample analogue estimator is asymptotically normal and construct a consistent estimator of its corresponding asymptotic variance. Combining these results establishes the asymptotic validity of tests based on these estimators. In contrast, we show that a common testing procedure based on a linear regression with block fixed effects and the usual heteroskedasticity-robust variance estimator is invalid in the sense that the resulting test may have a limiting rejection probability under the null hypothesis strictly greater than the nominal level. We then apply our results to study the asymptotic properties of what we call "fully-blocked" $2^K$ factorial designs, which are simply matched tuples designs applied to a full factorial experiment. Leveraging our previous results, we establish that our estimator achieves a lower asymptotic variance under the fully-blocked design than that under any stratified factorial design. A simulation study and empirical application illustrate the practical relevance of our results.
翻译:本文研究以多个处理方法随机控制的试验中的推断值, 处理状态是根据“ 匹配的图普尔” 设计来确定的。 这里, 匹配的图普尔设计, 我们指的是实验性设计, 将单位从感兴趣的人群中取样 i. id., 分组为“ 混合的” 区块, 其基数与治疗次数相同, 最后在每个区块内, 每一个治疗都完全一致地分配一次匹配的随机。 我们首先研究一般设置中匹配的图普尔设计的估计值和推断值, 其中, 利息参数是平均潜在治疗结果收集的线性对比矢量。 这个表格的参数包括但不局限于用于比较一种治疗的普通平均治疗效果。 我们首先建立一些条件, 样本类比估计值的基数, 并构建一个一致的估定值值值值值值值值值值 。 把这些结果合并起来, 我们测量的测试结果在一般的直线性设计设计结果中, 将一个共同的测试程序 以常规的直径直线性设计结果为基础, 直径直线性测试结果 。