The options framework for hierarchical reinforcement learning has increased its popularity in recent years and has made improvements in tackling the scalability problem in reinforcement learning. Yet, most of these recent successes are linked with a proper options initialization or discovery. When an expert is available, the options discovery problem can be addressed by learning an options-type hierarchical policy directly from expert demonstrations. This problem is referred to as hierarchical imitation learning and can be handled as an inference problem in a Hidden Markov Model, which is done via an Expectation-Maximization type algorithm. In this work, we propose a novel online algorithm to perform hierarchical imitation learning in the options framework. Further, we discuss the benefits of such an algorithm and compare it with its batch version in classical reinforcement learning benchmarks. We show that this approach works well in both discrete and continuous environments and, under certain conditions, it outperforms the batch version.


翻译:强化等级学习的选项框架近年来越来越受欢迎,并在解决强化等级学习的可扩缩性问题方面有所改进。然而,最近这些成功大多与适当的选项初始化或发现相关。当专家具备时,发现选项的问题可以通过直接从专家演示中学习选项类型等级政策来解决。这个问题被称为等级仿造学习,并可在隐藏的Markov模型中作为一个推论问题处理,该模型是通过期望-最大化类型算法完成的。在这项工作中,我们提出一种新的在线算法,以便在选项框架中进行等级仿制学习。此外,我们讨论这种算法的好处,并将其与经典强化学习基准中的批次版本进行比较。我们表明,这种方法在离散和连续的环境中运作良好,在某些条件下,它比分批版本更完善。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
9+阅读 · 2019年4月19日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员