We investigate a very recent concept for visualizing various aspects of a graph in the plane using a collection of drawings introduced by Hlin\v{e}n\'y and Masa\v{r}\'ik [GD 2023]. Formally, given a graph $G$, we aim to find an uncrossed collection containing drawings of $G$ in the plane such that each edge of $G$ is not crossed in at least one drawing in the collection. The uncrossed number of $G$ ($unc(G)$) is the smallest integer $k$ such that an uncrossed collection for $G$ of size $k$ exists. The uncrossed number is lower-bounded by the well-known thickness, which is an edge-decomposition of $G$ into planar graphs. This connection gives a trivial lower-bound $\lceil\frac{|E(G)|}{3|V(G)|-6}\rceil \le unc(G)$. In a recent paper, Balko, Hlin\v{e}n\'y, Masa\v{r}\'ik, Orthaber, Vogtenhuber, and Wagner [GD 2024] presented the first non-trivial and general lower-bound on the uncrossed number. We summarize it in terms of dense graphs (where $|E(G)|=\epsilon(|V(G)|)^2$ for some $\epsilon>0$): $\lceil\frac{|E(G)|}{c_\epsilon|V(G)|}\rceil \le unc(G)$, where $c_\epsilon\ge 2.82$ is a constant depending on $\epsilon$. We improve the lower-bound to state that $\lceil\frac{|E(G)|}{3|V(G)|-6-\sqrt{2|E(G)|}+\sqrt{6(|V(G)|-2)}}\rceil \le unc(G)$. Translated to dense graphs regime, the bound yields a multiplicative constant $c'_\epsilon=3-\sqrt{(2-\epsilon)}$ in the expression $\lceil\frac{|E(G)|}{c'_\epsilon|V(G)|+o(|V(G)|)}\rceil \le unc(G)$. Hence, it is tight (up to low-order terms) for $\epsilon \approx \frac{1}{2}$ as warranted by complete graphs. In fact, we formulate our result in the language of the maximum uncrossed subgraph number, that is, the maximum number of edges of $G$ that are not crossed in a drawing of $G$ in the plane. In that case, we also provide a construction certifying that our bound is asymptotically tight (up to low-order terms) on dense graphs for all $\epsilon>0$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
45+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
45+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员