Convex semilattices are algebras that are at the same time a convex algebra and a semilattice, together with a distributivity axiom. These algebras have attracted some attention in the last years as suitable algebras for probability and nondeterminism, in particular by being the Eilenberg-Moore algebras of the nonempty finitely-generated convex subsets of the distributions monad. A convex semilattice is cancellative if the underlying convex algebra is cancellative. Cancellative convex algebras have been characterized by M. H. Stone and by H. Kneser: A convex algebra is cancellative if and only if it is isomorphic to a convex subset of a vector space (with canonical convex algebra operations). We prove an analogous theorem for convex semilattices: A convex semilattice is cancellative if and only if it is isomorphic to a convex subset of a Riesz space, i.e., a lattice-ordered vector space (with canonical convex semilattice operations).
翻译:暂无翻译