We consider an initial-boundary value problem for the $n$-dimensional wave equation with the variable sound speed, $n\geq 1$. We construct three-level implicit in time compact in space (three-point in each space direction) 4th order finite-difference schemes on the uniform rectangular meshes including their one-parameter (for $n=2$) and three-parameter (for $n=3$) families. They are closely connected to some methods and schemes constructed recently by several authors. In a unified manner, we prove the conditional stability of schemes in the strong and weak energy norms together with the 4th order error estimate under natural conditions on the time step. We also give an example of extending a compact scheme for non-uniform in space and time rectangular meshes. We suggest simple effective iterative methods based on FFT to implement the schemes whose convergence rate, under the stability condition, is fast and independent on both the meshes and variable sound speed. A new effective initial guess to start iterations is given too. We also present promising results of numerical experiments.
翻译:我们认为,美元-维波方程式的初始界限值问题与可变音速($n\geq 1美元)相近。我们在空间(每个空间方向三点)的时间紧凑中构建了三层隐含在空间(每个空间方向三点)的时间紧紧线中,在统一的矩形间贝(包括其单数)的第四级有限差异计划,包括它们的单数(n=2美元)和三度(n=3美元)家庭。它们与一些作者最近制定的一些方法和计划密切相关。我们以统一的方式证明了强弱能源规范中的计划有条件的稳定性,以及在自然条件下的第四级误差估计。我们还提供了一个例子,扩展了空间和时长矩形间贝不统一的契约计划。我们建议基于FFT的简单有效的迭接合方法,在稳定条件下,这些组合率既快速又独立地取决于间歇和可变音速。我们提出了开始迭接的新的有效初步猜测。我们还提出了有希望的数字实验结果。